Sponsored Link:

Page Analysis

Sponsored Link:

stats.kde.cz


http://stats.kde.cz/
368 ratings.613 user reviews.

Web page information

  1. Keywords hit in search results
    ¶ · append approximation array axis=1 branch class comment contourplots created datapoints dataset debian density draft ereflect estimate estimator features frontrowbeauty gaussian github guide hosted https interpolation jasondavies kde¶ kernel kernels large loc=0 loc=2 master matplotlib mbostock mentioned merge method=none mgrid might mirror mirrors multidimensional multimedia nakupujete needs numbers options other parameters pastebin perform points positions python random ravel reference regularly representation required results scale=1 scale=3 science scipy scipypackages silicon size= smooth source start stats stick think transition unknown update users using valentino values wanting
  2. Search Engine Recommended Keywords
    KDE Vacancies, KDE Kentucky, KDE Download, KDE Windows, KDE Plasma, KDE Transportation, Fedora KDE, KDE/Gnome,
SciPyPackages/Stats - - SciPy -
... Perform a kernel density estimator on the results 19 X, Y = mgrid [xmin: xmax: 100j, ymin: ymax: 100j] 20 positions = c_ [X. ravel (), Y. ravel ()] 21 values = c_ [m1, m2] 22 kernel = stats. kde. ...
http://www.scipy.org/SciPyPackages/Stats
Class SciPy.stats.kde.gaussian_kde
Representation of a kernel-density estimate using Gaussian kernels. Parameters ----- dataset : (# of dims, # of data)-array datapoints to estimate from ...
http://www.scipy.org/doc/api_docs/SciPy.stats.kde.gaussian_kde.html
.:.:.Silicon.Hill.Mirror.:.:.
ftp://ftp.sh.cvut.cz/MIRRORS/debian-multimedia/ mirror via http: http://ftp.sh.cvut ... size stats: kde.png: mirror source: master.kde.org : mirror comment: Full mirror
http://ftp.sh.cvut.cz/
Frontrowbeauty.com - Frontrowbeauty
Frontrowbeauty.com was created in 08 Feb 2011 and hosted by Unknown. Our ... Random Stats. Kde-nakupujete.cz; Ereflect.com; Valentino.com
http://frontrowbeauty.com.outerstats.com/
[Python] Fast Gaussian KDE - Pastebin.com
scipy.stats.kde.gaussian_kde for large (>1e7) numbers of points and
http://pastebin.com/LNdYCZgw
scipy.stats.gaussian_kde — SciPy v0.11.dev Reference Guide (DRAFT)
scipy.stats.gaussian_kde¶ class scipy.stats.gaussian_kde(dataset, bw_method=None) [source] ¶ Representation of a kernel-density estimate using Gaussian kernels.
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
mbostock/d3 · GitHub
Update science.js to 1.7.0: fix science.stats.kde. [jasondavies] src: June 19, 2012: Merge branch '2.9.4' test: June 19, 2012: Merge branch 'transition-test' of https://github ...
https://github.com/mbostock/d3
[SciPy-user] Kernel density approximation
This might be a start: scipy.stats.kde.gaussian_kde I use it regularly for my n-d KDE needs. I think it has all of the moon/stick features required.
http://mail.scipy.org/pipermail/scipy-user/2007-November/014382.html
Re: [Matplotlib-users] Smooth contourplots
The other options you mentioned are for interpolation, and > are not at all what you're wanting to do. > > You can use scipy.stats.kde.gaussian_kde().
http://www.mail-archive.com/matplotlib-users@lists.sourceforge.net/msg18391.html
multidimensional - Using scipy.stats.gaussian_kde with 2 ...
... data rvs = np.append(stats.norm.rvs(loc=2,scale=1,size=(2000,1)), stats.norm.rvs(loc=0,scale=3,size=(2000,1)), axis=1) kde = stats.kde ...
http://stackoverflow.com/questions/4128699/using-scipy-stats-gaussian-kde-with-2-dimensional-data
No Coupons found for this website.

500 characters left

Your Review: (5 out of 5)
refresh captcha


Server Information
IP Address: 0.0.0.0
Site Disclaimer:

All trademarks are the property of their respective owners. The facts, figures, reviews, records, stats, and other data presented on this page is for suggestion and information purposes only. PageGlimpse.com is not responsible for any incorrect or incomplete information. PageGlimpse.com does not take responsibility for any user-reviews of websites inside its resource and reserves the right to keep or remove those. It is highly recommended that you review all the data for accuracy.